[]
Spa Cel Ift !|I // The Most Flexible IaC Platform

Terraform
Loops & Conditionals

Loops and Conditionals take your Terraform code one step further, making it
DRY and helping you offer full flexibility and genericity to it.

Used to create multiple resources of the same type

Exposes an object called count.index that can be used as you would normally use an iterator

Can be used on lists (based on their length) to create multiple resources of the same type but with different arguments — This generates an issue when you are

removing an element from the list if it's not the last one, because all the elements from that position onward will be recreated

Instances of the resource are accessed with resource_type.resource_name[index]

Simple count example
resource "azurerm_resource_group" "this" {

count =3
name = format("resource_group%d", count.index)
location = "westeurope"

}

Terraform Plan Output
azurerm_resource_group.this[0] will be created
+ resource "azurerm_resource_group" "this" {

+ id = (known after apply)
+ location = "westeurope"
+ name = "resource_group0"

azurerm_resource_group.this[1] will be created
+ resource "azurerm_resource_group" "this" {

+ id = (known after apply)
+ location = "westeurope"
+ name = "resource_groupl"

azurerm_resource_group.this[2] will be created
+ resource "azurerm_resource_group" "this" {

+ id = (known after apply)
+ location = "westeurope"
+ name = "resource_group2"

As count, it's used to create multiple resources of the same type

Exposes an object called each and this object has a key and a value

Keys are accessed with each.key

You can define multiple fields inside of the the values and you can access them with each.value.field

Can be used on maps and sets, but as a best practice, you should use maps. Doesn’t have the same limitation as count, due to the fact that you are not using

lists.

Instances of the resource are accessed with resource_type.resource_name[key]

locals {
defining a variable that contains the details related to the resource groups
rg_details = {

rgl = {
location = "westeurope"
}
rg2 = {
location = "eastus"
}
rg3 = {
location = "westus"
}

One at a time, the keys in this example are: rgl, rg2 and rg3
One at a time, the values in this example are the maps used after rgi1]|2]|3

3

defining a variable that contains the details related to the nsgs
nsg_details = {

nsgl = {
rg_name = "rgl"
}
nsg2 = {
rg_name = "rg3"
}
}

resource "azurerm_resource_group" "this" {

for_each = local.rg_details

name = each.key

location = each.value.location
}

resource "azurerm_network_security_group" "this" {

for_each = local.nsg_details

name = each.key

location = azurerm_resource_group.this[each.value.rg_name].location # Giving the flexibility for each nsg to choose its resource
group

resource_group_name = azurerm_resource_group.this[each.value.rg_name].name # Giving the flexibility for each nsg to choose its resource
group
}

Terraform Plan Output
azurerm_resource_group.this["rg1"] will be created
+ resource "azurerm_resource_group" "this" {

+ id = (known after apply)
+ location = "westeurope"
+ name = "rgl1"

azurerm_resource_group.this["rg2"] will be created
+ resource "azurerm_resource_group" "this" {

+ id = (known after apply)
+ location = "eastus"
+ name = "rg2"

azurerm_resource_group.this["rg3"] will be created
+ resource "azurerm_resource_group" "this" {

+ id = (known after apply)
+ location = "westus"
+ name = "rg3"

Used to verify a condition

Syntax: condition ? vall : val2 — If the condition is true, the value assigned will be vall otherwise it will be val2

Nested conditions can be used and you can go as deep as you want

Can be used with for_each or count to create | avoid creating resources

resource "azurerm_resource_group" "__" {
count = var.create_this_rg 7?7 1 : 0
name = "this_rg"
location = "eastus"
}
variable "create_this_rg" {
type = bool
default = true
}
locals {
eleml = 4
elem2 = length("elem2")

local.elem1 > local.elem2 ? local.elem2 : local.elemil
local.eleml > local.elem2 ? local.elem2 : local.eleml == local.elem2 ? local.eleml : 0@

simple_condition
nested_condition

output "simple_condition" {
value = local.simple_condition

3

output "nested_condition" {
value = local.nested_condition

3

Terraform Apply Output
simple_condition = 4
nested_condition = 0

Syntax: condition ? vall : val2 — If the condition is true, the value assigned will be vall otherwise it will be val2

Used to verify a condition

Nested conditions can be used and you can go as deep as you want

Can be used with for_each or count to create | avoid creating resources

locals {
a_list = ["Alice", "Bob", "Charlie"]
a_map = {
student1 = {
name = "Alice"
age = 20
favourite_subjects = ["Math", "Physics"]
}
student2 = {
name = "Bob"
age =19
favourite_subjects = ["English", "Spanish"]
}
student3 = {
name = "Charlie"
age = 22
favourite_subjects = ["Computer Science", "Marketing"]
}
}
list_from_list = [for name in local.a_list : format("Hello %s!", name)]
list_from_map = [for student_id, student_details in local.a_map : student_details.name]
map_from_list = { for name in local.a_list : name => format("Hello %s!", name) }

map_from_map { for student_id, student_details in local.a_map : student_id => student_details.name }
nested_loop flatten([for student_id, student_details in local.a_map : [for subject in student_details.favourite_subjects : format("%s_%s",
student_id, subject)]l1)

output "list_from_list" {
value = local.list_from_list

output "list_from_map" {
value = local.list_from_map

output "map_from_list" {
value = local.map_from_list

output "map_from_map" {
value = local.map_from_map

output "nested_loop" {
value = local.nested_loop

}

Terraform Apply Output
list_from_list = ["Hello Alice!", "Hello Bob!", "Hello Charlie!"]

list_from_map = ["Alice", "Bob", "Charlie"]

map_from_list = {
"Alice" = "Hello Alice!"
"Bob" = "Hello Bob!"
"Charlie" = "Hello Charlie!"

}

map_from_map = {
"student1" = "Alice"
"student2" = "Bob"
"student3" = "Charlie"

nested_loop = ["student1_Math", "studentl_Physics", "student2_English", "student2_Spanish", "student3_Computer Science", "student3_Marketing"]

e The if block exists only in a for loop, for everything else you need to use a ternary operator
e Behaves as an if block in any other programming language

e You can use and (&&) / or (||) logical operators

locals {

list_of_numbers

an_even_number_list
an_even_number_list_greater_than_9
an_odd_number_list_plus_numbers_greater_than_10

}

[10, 11, 87, 39, 22, 4]

[for i in local.list_of_numbers : i if i % 2 == 0]

[for i in local.list_of_numbers : i if i % 2 == 0 & & i > 9]
[for i in local.list_of_numbers : i if i %2 !'=0 || i > 10]

output "an_even_number_list" {
value = local.an_even_number_list

output "an_even_number_list_greater_than_9" {
value = local.an_even_number_list_greater_than_9

output "an_odd_number_list_plus_numbers_greater_than_10" {
value = local.an_odd_number_list_plus_numbers_greater_than_10

}

Terraform Apply Output
an_even_number_list = [10, 22, 4]

an_even_number_list_greater_than_9 = [10, 22]

an_odd_number_list_plus_numbers_greater_than_10 = [11, 87, 39, 22]

spacelift*

The Most Flexible 1aC Platform

