
EBOOK

Balancing Speed and
Control in DevOps
Why platform engineering is the key to safe
self-service infrastructure

2

EBOOK

Empowering Your DevOps Team

Introduction
The appeal of centralizing control of your
infrastructure management is undeniable: Funneling
all your processes through a single team with an
in-depth understanding of DevOps best practices
ensures control over IaC and pipelines for maximum
security and reliability.

However, centralization also means bottlenecks.
Waiting times can stretch to weeks as one team with
limited resources must deliver everything required to
deploy the infrastructure that everyone needs. Sure,
everything is secure, reliable, and consistent when
your DevOps team members serve as gatekeepers,
but watching changes take effect safely and securely
before moving on to something else is hardly the
best application of their expertise. Fortunately, there
is a better way.

In this guide, we look at the shift from DevOps to
platform engineering and the central role self-service
plays in it. We explore the value of successful self-
service systems in organizations and explain how
a specialized infrastructure orchestration platform
like Spacelift enables self-service. Along the way,
we present real-world examples of how it’s done
and include stories from customers who have safely
transformed their developer velocity by building
successful self-service workflows.

But first, what is platform engineering — and how
does it differ from DevOps?

3

EBOOK

Empowering Your DevOps Team

Platform engineering vs. DevOps

DevOps has transformed software development and deployment, shortening development cycles, accelerating
deployments, reducing deployment failures, and speeding up recovery from issues. Platform engineering has
not superseded DevOps; they are complementary practices. In fact, organizations that have adopted platform
engineering generally have a DevOps organization in place already.

DevOps defined
DevOps concepts, methodologies, and best practices
are designed to advance the software delivery
experience, whereas platform engineering involves
creating centralized IDPs that provide essential tools
and workflows for developers.

By eliminating the gap between development and
operations teams, DevOps shortens the delivery
lifecycle, increasing throughput and quality.

DevOps

Plan

Release

Code

Build

Test

Monitor

Operate

Deploy

Essentially, DevOps is a cultural movement
that promotes improvements around developer
autonomy, automation, and collaboration.
Successful DevOps strategies typically embrace
multiple tools and best practices to remove
roadblocks from the development process:

• CI/CD pipelines save time and help maintain
consistency.

• Repeatable test suites and automated security
monitoring ensure issues are detected early
in development.

• Developers can easily access live infrastructure
to test scalability changes and investigate
issues reported by operations teams.

A more responsive development workflow
emerges, centering on continuous improvement
and close communication. But DevOps teams can
struggle to implement these techniques in a way
that delivers real value to devs — enter platform
engineering.

4

EBOOK

Empowering Your DevOps Team

Platform engineering defined
Platform engineering provides a unified, self-service platform for developers
(IDP) by designing and implementing toolchains that streamline software
development and delivery. This IDP serves as a bridge between developers
and the infrastructure, streamlining complex tasks that would be impractical
for individual developers to handle on their own.

Platform engineering doesn’t just streamline and standardize the
development and deployment process, it also enhances developer velocity,
improves reliability and performance, and increases the overall scalability
of your infrastructure and applications.

Self-service access is a key plank of effective platform engineering,
enabling developers to access the resources they need without having
to rely on operations or infrastructure teams. This autonomy reduces
bottlenecks because you don’t need approval for things like creating new
staging environments. Developers can simply start isolated environments
with a simple command, thereby maintaining productivity without deep
infrastructure knowledge.

Observability
tools

Dev team A

Dev team B

Platform Engineer

Platform

Selft-service

Apps Backend infrastructure

Data, ML Ops

CI/CD tools

Infrastructure
provisioning

Security tools

FinOps tools

Container
platform

...

https://spacelift.io/blog/self-service-infrastructure

5

EBOOK

Empowering Your DevOps Team

How do platform engineering
and DevOps differ
Platform engineering and DevOps have distinct objectives and different
roles and responsibilities. They also affect developers in different ways.

Focus and purpose

Platform engineering focuses on building and maintaining internal platforms
to streamline application development and deployment. In contrast, DevOps
seeks to integrate development and operations to enhance collaboration,
automate workflows, and accelerate delivery cycles.

• DevOps involves concepts, methodologies, and best practices proven to
improve the software delivery experience.

• It focuses on automation, autonomy, and communication — advocating
solutions that can support modern workflows.

• Platform engineering focuses on building and maintaining the IDP,
allowing developers to engage immediately in their core work.

• With platform engineering, you approach the platform’s evolution
in the same as you would that of other products, treating developers
as customers.

6

EBOOK

Empowering Your DevOps Team

Roles and responsibilities

Platform engineers are responsible for creating and managing scalable,
reusable platforms while overseeing infrastructure, tooling, and developer
experience. DevOps engineers bridge the gap between development and
operations, managing CI/CD pipelines, monitoring, and automation to ensure
continuous and smooth delivery and deployment.

• DevOps specialists create high-level processes that enhance
collaboration between development and operations teams.

• DevOps responsibilities cover the entire software development lifecycle,
including early stages like requirements planning.

• Platform engineering involves creating a dedicated team that builds
developer tools using a platform-led approach.

• Platform teams work closer to the infrastructure, creating effective self-
service tools that empower developers.

Impact on developers

Platform engineering provides developers with stable, scalable, self-service
platforms, reducing infrastructure management overhead. This allows
developers to focus on writing code and developing features. DevOps
fosters a culture of collaboration and shared responsibility, enabling
developers to be more involved in deployment and operations, enhancing
overall agility and responsiveness.

• CI/CD pipelines, test suites, and IaC are commonly found in a DevOps
context but can be challenging for developers to utilize.

• Developers often lack the resources to develop DevOps processes
themselves, as their primary role is to complete the development tasks
that drive business value.

• Platform engineering aims to make life easier for developers by providing
the necessary tools and workflows.

• The IDP lowers cognitive load, increases fulfillment, and allows
developers more time for meaningful progress on new product features.

7

EBOOK

Empowering Your DevOps Team

The shift to platform engineering

At its core, platform engineering recognizes that the ultimate goal is not simply delivering infrastructure for
developer teams but supporting developers in a scaled-up organization.

This encompasses many original DevOps philosophies, adding several technologies and methodologies to
create a holistic development experience:

Automation and IaC — Infrastructure should
be automated and reproducible. IaC tools define
what the platform should look like and enable new
instances to be created on demand. Manual actions
are minimized to eliminate friction points in the
development flow.

Focus on efficiency — The platform should be
designed to solve the most common challenges
encountered by developers. Instead of trying to
recreate functionality that already works well,
focus on supporting the unique needs of your
teams. Rolling out your own CI/CD or source control
system is unlikely to be beneficial, for example, but
providing a mechanism that mirrors a snapshot of
your production infrastructure into a fresh staging
environment could save developers hours each week.

Self-service access — Every part of the platform
should be an asset that developers can freely utilize.
You’re providing a toolbox of controls for developers
to use as they see fit. Avoid prescribing specific
usage patterns, as individual engineers may work in
slightly different ways.

Continual evolution — The platform should be
continually developed using the same product-driven
mindset you apply to customer-facing functionality.
Although the “customer” is internal developers,
it’s still vital that improvements are implemented
promptly to ensure the platform effectively meets
their needs. This keeps developers productive over a
sustained period of time.

https://spacelift.io/blog/infrastructure-as-code-tools

8

EBOOK

Empowering Your DevOps Team

Each of these principles centers on simplifying the development experience.
Platform teams must listen to development teams and then provide the
toolchains they require.

Whereas DevOps roles typically have a broad remit and can include many
different responsibilities, platform engineers focus exclusively on the
creation of IDPs. These platforms are designed to act as the development
team’s operational center, offering everything needed to deliver quality
software on time:

• IDPs provide the mechanisms that enable self-service, on-demand access
to infrastructure, such as by offering custom CLIs and web interfaces that
let developers connect to the resources they need.

• Platforms include capabilities to help developers set up new
environments and efficiently test their changes.

• When all developers use the IDP for their work, team leaders can
continually and centrally enforce critical security and governance policies.

Hence, creating an IDP improves the developer experience and delivers
consistency throughout the delivery lifecycle. This facilitates productivity
increases and can give the business a competitive advantage by allowing it
to launch new features quickly without affecting quality standards.

9

EBOOK

Empowering Your DevOps Team

Benefits of platform engineering
Organizations can be hesitant to invest in platform engineering. A common
concern is whether the engineers working on the platform would be better
utilized within the main product team. Here are four reasons why you should
commit to platform engineering.

Accelerating development

Internal platforms increase development speed by giving developers
automated processes and self-service infrastructure to make them more
productive. They can make continuous progress on the product features the
business prioritizes.

Once a feature is ready, the development team can spin up a new test
environment to verify the change autonomously. The platform can perform
automated tests and then ship the feature to customers in production while
developers start work on the next task. This reduces time to market without
compromising on quality.

Promoting focus and specialization

Developers should be able to focus on their key proficiency — development.
Modern infrastructure, CI/CD, and distributed deployment systems are
dedicated specializations. Developers don’t need to be experts in these
fields and may sometimes struggle to understand them, preventing
them from retaining their focus on building new software. The platform
engineering team will include experts skilled in relevant topics such as IaC,
CI/CD, and PaaS solutions, providing the specialization required to speed up
advancements in both development and infrastructure.

10

EBOOK

Empowering Your DevOps Team

“Spacelift provides the kind of tooling
that supports governed decentralization,
enabling and empowering developers to
solve problems themselves — even for
a very regimented company. You could
build Spacelift policies that are very
restrictive of what a developer can do,
so even in a PCI-regulated environment
much like Checkout.com, you can still
have teams that are empowered in their
IaC to use these kinds of tools
and innovate.”
Joe Hutchinson
Director of Engineering — Developer Platform
Checkout.com

11

EBOOK

Empowering Your DevOps Team

Ensuring tools and processes continually develop

Development processes need to evolve as your product grows. Over time,
your stack will add new technologies and requirements. You might introduce
a new storage system, require more comprehensive end-to-end tests, or
have to comply with another regulatory standard.

Platform engineering ensures your toolchain develops in tandem. Without
it, you have to make ad-hoc workflow adjustments, which can be poorly
documented and difficult to maintain. Furthermore, developers often don’t
have time to make the optimizations they require, so inefficient practices
continue even after they’ve been recognized as bottlenecks. Giving devs
access to a platform engineering team allows frustrations to be addressed
without delaying the product’s release schedule.

Improving developer experience (DevEx)

Platform engineering improves DevEx through regulated self-service
infrastructure. Developers who require infrastructure provisioning to test
their applications can easily use the self-service mechanism the platform
team provides, without requiring any other input from them to test their
application. This reduces the time spent on testing new features, resulting in
faster deployment and time to market.

12

EBOOK

Empowering Your DevOps Team

“Confidently delegating much of IaC
management to the individuals that
own it allowed our teams to transform
into service teams — not just remote
hands gatekeeping AWS.”
Maxx Daymon
Staff Cloud Platform Engineer
1Password

13

EBOOK

Empowering Your DevOps Team

Building your platform
Your platform engineers should work closely with SREs, cloud architects,
and security engineers to build a successful platform. Platform engineers
should be experts in IaC (OpenTofu, Terraform, Pulumi, etc.) and cloud
technologies (AWS/Azure/Google Cloud, depending on the cloud provider
the organization is using). They should also monitor the platform’s reliability,
scalability, and performance while ensuring the necessary standardization
and governance. This means they should have expertise in CI/CD,
monitoring, observability, governance, and compliance tools.

Platform engineering team

Cloud architects
Security engineers

Other roles

SREs

Platform engineers

Team roles and responsibilities

Platform engineers will discuss challenges with development teams and act
upon their insights to build internal platforms. Their tasks can include the
following:

• Configuring IaC tools to provision new infrastructure on demand

• Working with existing infrastructure and operations teams to bridge the
gap between dev and prod

• Implementing and maintaining CI/CD pipelines that automate inefficient
workflows

• Creating bespoke internal tools to accommodate org-specific workflows,
enforce security policies, and maintain compliance with regulatory
standards

• Building, maintaining, and documenting custom APIs, CLIs, and web
UIs that expose the platform’s functionality — for example, an API that
exposes the number of errors in each environment or a CLI that pushes
local code straight to a new sandbox.

14

EBOOK

Empowering Your DevOps Team

Building your toolstack

Platform engineering encompasses cloud services, containers, automation,
monitoring, and other areas, so it covers many tools:

Type of tool Examples

Cloud Services AWS, Microsoft Azure, Google Cloud, Oracle Cloud, etc.

Version Control Systems GitHub, GitLab, BitBucket

Infrastructure as Code (IaC) Terraform, OpenTofu, Pulumi, AWS CloudFormation

IaC Orchestration Platforms Spacelift

Containerization Docker, Podman

Orchestration Kubernetes, Docker Swarm

Configuration Management Ansible, Chef, Puppet

CI/CD Jenkins, GitHub Actions, CircleCI, GitLab CI

Monitoring Prometheus, Grafana, ELK Stack (Elastic Search, Logstash, Kibana)

Security Open Policy Agent, AWS Secrets Manager, Vault

Programming Languages Python, Golang, Bash, Powershell

15

EBOOK

Empowering Your DevOps Team

Platform engineering best practices

Bear these practices in mind as you adopt platform engineering:

1. Store your code in a VCS – This improves collaboration, tracks changes,
and can facilitate reverting to a previous state when errors appear.

2. Adopt IaC – Automate and provision your infrastructure to reduce manual
repetitive costs and minimize human errors.

3. Implement CI/CD – Reduce deployment times, automate builds/tests, and
ensure reliability.

4. Increase observability – Monitor the health and performance of your
applications and infrastructure. Ensure logs are collected and easily
accessible for troubleshooting.

5. Improve security – Use the least privilege principle, manage secrets
securely, and scan regularly for security vulnerabilities.

6. Build for scale – Design your infrastructure for scaling out rather than
scaling up (this will ensure you add more instances to your workload,
rather than more resources for one instance) and also design for failure by
implementing high-availability and disaster recovery mechanisms.

7. Optimize usage – Ensure your resources are used efficiently and
optimize costs.

8. Improve documentation and knowledge-sharing – Promote a culture
of collaboration between teams and share the necessary resources to
understand the architecture, configurations, and processes.

16

EBOOK

Empowering Your DevOps Team

How platform engineering enables
self-service infrastructure

As organizations scale, collaboration between teams becomes more complex. Enabling autonomy for
development teams and reducing bottlenecks in platform teams is vital. A key plank of platform engineering
is making every part of the platform freely available to developers, so providing self-service access to
infrastructure is central to its success.

Establishing a self-service culture is not easy, but the benefits repay the effort in a very short time. As the
organization scales, a strong self-service culture makes it easier to cooperate and improve the quality of
delivered solutions to both internal and external clients.

Here are the main benefits:

Organizational lens

• Increase autonomy. The team (i.e., the
development team) decides the infrastructure
to be created. Their decisions are based on
available templates, guidelines and collaboration
with the self-service infrastructure team (i.e., the
platform team).

• Decrease waiting times. The development team
doesn’t have to wait for infrastructure resources.

• Increase productivity. With increased autonomy
and decreased waiting times, the development
team can reduce waste during work.

• Leverage knowledge-sharing. By enabling teams
with self-service, the organization can share best
practices and standards more widely.

• Respond to the shortage of infrastructure,
network, system, SRE, or DevOps engineers. IT
talent is in high demand. Having a structured,
organized team of experts who act as a platform
team helps the organization to avoid over-hiring
and allows them to better manage people
and resources.

Processes and engineering lens

• Control and decrease the costs of infrastructure

• Unify stacks and used technologies

• Implement and control security throughout the
whole organization

• Control integrations, i.e. authentication services

https://en.wikipedia.org/wiki/Lean_software_development#Eliminate_waste

17

EBOOK

Empowering Your DevOps Team

How does Spacelift enable self-service infrastructure?
Spacelift is an infrastructure orchestration platform that meets the
requirements for self-service infrastructure we’ve discussed above. It
delivers all the features the platform team may need to provide their
services to internal and external development teams.

1. Maximizes reusability
A key benefit of self-service infrastructure is the potential to use predefined,
widely available templates for different use cases. Spacelift implements this
functionality through Blueprints.

The platform team defines the blueprints and uses Spaces and Policies
to allow other teams to use them. Blueprints can be as simple as creating
an EC2 instance in AWS or as complicated as setting up a network using
a virtual private cloud (VPC) and connecting it to other existing networks
through a transit gateway or virtual private network (VPN).

With parametrization of Blueprints through Inputs, platform teams have a
very powerful toolset to deliver business-focused, flexible solutions that are
fully in their control.

2. Prioritizes security
One of the benefits of self-service is enhanced security. Allowing multiple
teams to use a vulnerable infrastructure template creates unacceptable
risk. However, expecting every team to create and deploy their own
infrastructure leaves you open to deploying vulnerable infrastructure.

You can mitigate both risks by implementing the Spacelift platform using a
self-service approach. The platform team designs and prepares Blueprints,
which should be subject to extensive testing before publishing.

Spaces help to ensure that the blueprints will be deployed on permitted
environments only. For example, if the organization uses a CI/CD account, all
templates related to CI/CD should be deployed there, not in the production
account. Spaces can be used to represent the cloud setup, for example
accounts, subscriptions, or environments.

Another layer for securing Blueprints is policies. Policies can be attached
and enforced in published blueprints, so the platform team can ensure
specific behavior and specific use of the templates.

https://spacelift.io/
https://docs.spacelift.io/concepts/blueprint/
https://docs.spacelift.io/concepts/spaces/
https://docs.spacelift.io/concepts/policy/
https://docs.spacelift.io/concepts/blueprint/#inputs
https://docs.spacelift.io/concepts/policy/

18

EBOOK

Empowering Your DevOps Team

“To provide a catalog of infrastructure
components, we took advantage of
OPA integration to automate policy
and implement policies directly in code
which allowed us to set guardrails on
what users can and cannot do thus
ensuring infrastructure consistency
and best practices.”
Timur Bublik
Platform Engineering Lead
Tier Mobility

19

EBOOK

Empowering Your DevOps Team

3. Enhances efficiency
Blueprints are also a key concept to remove the blockers that can make
teams less efficient. The development team doesn’t need to focus on
acquiring additional skills within the team, such as expertise on Terraform,
cloud infrastructure deployments, etc. Instead, they can use Blueprints to
deploy specific infrastructure to specific environments.

4. Enables CLI and API
Using CLI tools (or API calls) allows you to build wider solutions, in which a
specific component is triggered by an overarching service. This can happen
when the platform team more complex solutions, as well as self-service
infrastructure.

Spacelift has its own Terraform/OpenTofu provider that can be leveraged
easily to manage any Spacelift resource. It also offers a CLI called spacectl,
a flexible tool that is easy to install, as well as the GitHub Action to install
and configure it inside the CI/CD pipeline. And that’s not all: Many engineers
prefer to use APIs in certain cases, so Spacelift offers the GraphQL API,
which allows users to interact with a service in a programmatic way.

https://search.opentofu.org/provider/spacelift-io/spacelift/latest
https://github.com/spacelift-io/spacectl
https://github.com/spacelift-io/setup-spacectl
https://docs.spacelift.io/integrations/api.html

20

EBOOK

Empowering Your DevOps Team

5. Boosts usability
Creating the best possible approach to self-service infrastructure often
raises a dilemma. Cloud setup in modern organizations is complicated and
crafted exactly for specific needs. Use of templates reduces this adaptability,
so the platform team has two options: Create complex templates and push
teams to use the single solution, or create many small templates and ensure
that teams are able to construct complicated solutions with them. The
latter requires the team to have at least an understanding of IaC and self-
service technologies.

Spacelift solves this dilemma with stack dependencies. This approach
allows platform teams to deliver well-designed, single-purpose solutions.
Their clients select the blueprints that best fit their needs and connect them
into logical chains, using stack dependencies.

6. Enforces best practices
One of the platform team’s duties is to implement and enforce best
practices. This remains true when you apply a self-service infrastructure
approach. By combining Spaces, Blueprints, policies, and the module
registry with a modern self-service approach to manage the dependencies
between stacks, it becomes easier to ensure best practices are followed.

A compelling feature of Spacelift is the way it allows you to manage the
entire platform setup. As mentioned before, Spacelift has published its
own Terraform provider, which means the process of managing the
platform governs all processes in the organization, such as infrastructure
coding (and creation), version control, CI/CD, security scans, governance, etc.
This approach allows the organization to achieve next-level quality
and cooperation.

In this article, we explore examples of self-service infrastructure, the
problems it solved, and the improvements Spacelift can add.

https://docs.spacelift.io/concepts/stack/stack-dependencies
https://docs.spacelift.io/vendors/terraform/terraform-provider
https://spacelift.io/blog/self-service-infrastructure-with-spacelift

21

EBOOK

Empowering Your DevOps Team

“The primary win has been related to
eliminating the manual process of direct
Terraform applications and coordinating
changes between engineers. We have
been able to lower the use of direct
privileges for deployment without
changing our ability to develop IaC.”

Chris Schafer
Senior DevOps Engineer
Archipelago

22

EBOOK

Empowering Your DevOps Team

Real-world self-service
infrastructure implementations

We will now walk you through some real cases we’ve observed or worked on:

Case 1: CloudFormation for setting up environments
This project centers on the team who managed the infrastructure templates for development teams. They used
AWS CloudFormation to create separated environments in multiple AWS accounts. The infrastructure created
in these environments contains networks, policies, container clusters, serverless, and more.

The problem

The first problem in this case concerned knowledge
gaps around AWS architecture and best practices
within development teams. The second was
more complex: The organization had numerous
development teams, with each team owning at
least three AWS accounts, sometimes more. This
proliferation of teams and ownership meant there
was little control over the infrastructure and no
single pane of glass where information about
systems could be gathered.

How it was addressed

The initial solution was to create a set of
CloudFormation snippets that could be collected by
the development team and combined into one big
template according to their needs.

23

EBOOK

Empowering Your DevOps Team

What it solved Issues raised by this approach

Centralized repository of the
CloudFormation templates prepared
by experienced engineers

The decision to use small snippets led to a huge number of files.
Development teams always needed to have help with selecting
proper templates.

Way to keep infrastructure
under specification designed
by DevOps team

Removing the responsibility of creating the full template from snippets
didn’t eliminate the infrastructure workload for the development team.
They still had to know how to work with it.

Although snippets were versioned and stored in the repository,
development teams were still in charge of creating the final
template. This meant that the development team could still introduce
misconfigurations into infrastructure.

Disconnected steps in the process meant the platform team didn’t
know who is using snippets and the development team needed to
constantly monitor the updates.

It is clear that this approach did not deliver a satisfactory solution, failing to
resolve technical issues or improve the process.

24

EBOOK

Empowering Your DevOps Team

How Spacelift could solve the problem

The first step would be to devise an appropriate process for defining the
requirements and designing the templates. With Spacelift, you don’t need to
use unwieldy CloudFormation snippets: you can prepare and parameterize
full templates. For optimal flexibility, the templates should be prepared per
their layers. For example, you would have separate templates for the VPC,
ECS cluster, and so on. Finally, the templates can be published as Blueprints.

We mentioned the complicated AWS account setup earlier. This setup can
be replicated using Spaces and guarded by policies.

When the development team creates their stacks from Blueprints, they use
stack dependencies to connect all stacks in a logical chain of deployment.

The first diagram below presents the company’s process. The second shows
the process with Spacelift. We also show additional skills the team needs to
work with these processes.

Platform Engineer

Snippets

AWS Cloud

Infrastructure

Knowledge needed

CloudFormation

Snippets Snippets

Code

Project repository

SnippetsSnippets Snippets

SnippetsSnippets Snippets

SnippetsSnippets Snippets

SnippetsSnippets Snippets

Git repository

Developer

Creates template

Deploys infrastructure
• Cloudformation
• AWS services
• Architecture solutions
• CI/CD for infrastructure

Selects snippets

Manages

25

EBOOK

Empowering Your DevOps Team

This diagram shows the process as is. The development team has to do
considerable manual work on infrastructure tasks to create the templates
properly. The platform team doesn’t know who is using the snippets
(and how).

Even worse, the development team has full access to the snippets, and they
can modify them. These issues add tension and uncertainty to the process.

The second diagram shows the Spacelift approach for self-service
infrastructure. It clearly separates responsibilities and uses one central tool.
The respective responsibilities of the platform and development teams are
clearly defined. There is an established control and communication channel.

Development teams can focus on their main goal — delivering software. The
platform team controls the CloudFormation blueprints and these cannot be
modified by development teams, enforcing configuration best practices.

The platform team can also easily track the quality of executions and
improve the blueprints when needed.

Platform Engineer

AWS Cloud

Infrastructure

Knowledge needed

Stack

Stack

StackBlueprint

Blueprint

Blueprint

Blueprint Stack

Depends

CloudFormation
template

CloudFormation
template

CloudFormation
template

CloudFormation
template

CloudFormation
template

CloudFormation
template

CloudFormation
template

CloudFormation
template

Git repository

Developer

Defines stacks and dependencies

Manages
• Cloudformation
• AWS services
• Architecture solutions
• CI/CD for infrastructure

Selects blueprints

Design and develop

Depends

Update Deploy

26

EBOOK

Empowering Your DevOps Team

Case 2: Multicloud Kubernetes
Kubernetes shines as an agnostic tool that can be used in a range of
applications. It can be deployed on AWS and Azure or AWS and on-prem,
for example. Such multicloud setups are useful, especially when different
workloads operate under different security guardrails.

In this example, we explore creating self-service infrastructure for such a
scenario.

The problem

This is a fairly straightforward case, in which the development team wants
to quickly deploy a workload on a Kubernetes cluster. Depending on security
recommendations, deployment will take place in AWS or on-prem.

How it can be solved

For this exercise, we assume the platform team is in charge of Kubernetes
infrastructure and keep the solution simple, with one AWS account per
environment and one Kubernetes cluster. The same setup is on-prem — one
cluster per environment.

27

EBOOK

Empowering Your DevOps Team

Let’s explore the responsibilities of platform and development teams in this scenario:

Platform team responsibilities Development team responsibilities

Build blueprints for cluster’s infrastructure Create stacks from blueprints and configure workload

Create and manage clusters Select proper Kubernetes cluster for deployment

Create and control proper separation
between clusters

Although snippets were versioned and stored in the repository,
development teams were still in charge of creating the final
template. This meant that the development team could still
introduce misconfigurations into infrastructure.

Build blueprints for development teams
to deploy workloads

Disconnected steps in the process meant the platform team
didn’t know who is using snippets and the development team
needed to constantly monitor the updates.

As we can see, the platform team is responsible for the underlying
infrastructure. Fortunately, this responsibility can be executed through
Spacelift, in the same way that development teams use it.

28

EBOOK

Empowering Your DevOps Team

To avoid confusion for development teams, Spacelift administrators create
Spaces that logically separate platform team administrative work from
development work. Another set of Spaces can be created to separate
environments and clusters (on-prem, AWS). This logical structure must be
part of SDLC design.

The diagram above illustrates the potential process of this solution. It offers
simple and compelling benefits:

• All decisions and deployments are made with one tool (Spacelift).

• A single team is responsible for infrastructure.

• Developers need to know only where to deploy workload. From their
perspective, the additional work is to select a defined worker pool.

• No additional knowledge is expected from development teams.

• Development teams are not blocked with their deployments.

• Spaces separate the responsibilities of platform and development teams.

Platform Engineer

AWS Cloud

Infrastructure

Knowledge needed

Stack

Stack

StackBlueprint

Blueprint

Blueprint

Blueprint Stack

Depends

Terraform
template (AWS)

Terraform
template (on-prem)

Kubernetes
template

Kubernetes
template

Kubernetes
template

Git repository

On-prem

Developer

Manages

Uses

• Understand purpose of each blueprint
• Ability to define the stacks and
 dependencies between them
• Select worker pool type

Selects blueprints

Design and develop

Depends
Kubernetes

Update

Deploy

Deploy Deploy

Defines stacks and dependencies

Dev
Ops

Private
Worker

Pool

29

EBOOK

Empowering Your DevOps Team

Case 3: Create entire project for development teams
In this case, we look at a real-world scenario in which the platform team sets
out to deliver fully functional templates for development teams to create
projects. These templates must contain infrastructure on AWS, as well as
GitHub repositories and pipelines. We will approach this case in two steps.
We have already created an appropriate setup in Spacelift, with Spaces, etc.

The first step is to create and configure the GitHub repository. Configuration
involves assigning proper users, configuring the protected branches, and so
on. The second step is to deploy infrastructure on AWS. This step is strictly
related to infrastructure.

This is how the process might be constructed:

Platform Engineer

AWS Cloud

Infrastructure

Knowledge needed

Stack

Stack

Stack

StackBlueprint

Blueprint

Blueprint

Blueprint

Terraform template
(for GitHub)

Terraform template
(for AWS)

Terraform template
(for GitHub)

Terraform template
(for AWS)

Terraform template
(for GitHub)

Git repository

Developer

Manages
• Understand purpose of each blueprint
• Ability to define the stacks and
 dependencies between them

Selects blueprints

Design and develop

Github

Update

Deploy

Deploy

Defines stacks and dependencies

30

EBOOK

Empowering Your DevOps Team

The platform team creates the templates for all use cases. There may be
just one template related to GitHub repository creation, enabling almost
complete control over the way repositories are constructed and managed.
This is a very important consideration when your organization is scaling.
The approach allows you to keep the SDLC approach unified for the whole
organization, which can be important from a regulatory perspective.

This is a very straightforward step for the development team,. They simply
select the name for the repositories and who should have access to them.
They are then ready to ship their code into the repository.

The second step is similar to previous scenarios. The platform team prepares
and manages blueprints for infrastructure, and development teams use
these blueprints to create their infrastructure for applications.

31

EBOOK

Empowering Your DevOps Team

“It’s much easier for the developers
to synchronize releases between the
infrastructure code and the developer
code. Before, we were managing the
steps to do that, but right now Spacelift
does that for us, by default or via policy.
This new way of managing Terraform
helps us improve collaboration and
makes the developer autonomous.”

Kévin Lemele
Senior Platform Engineer
Payfit

32

EBOOK

Empowering Your DevOps Team

Conclusion

DevOps and platform engineering have transformed the process of delivering and deploying software by
allowing developers to focus on their key specialty. As forward-looking organizations transition from a
centralized DevOps approach to platform engineering, a successful self-service system becomes pivotal for
enhancing developer velocity with control.

You won’t establish a well-functioning self-service
culture overnight, but the results will transform
your developers’ productivity. As your organization
scales, having a strong self-service culture in place
will make it easier for teams to cooperate and ensure
that the solutions are of the highest quality and are
delivered to internal and external clients quickly.

A specialized infrastructure orchestration platform
like Spacelift can be your secret weapon as you
consolidate a self-service culture in your organization.
Maximize reusability, prioritize security, enhance
efficiency, enable API and CLI, boost usability, and
enforce practices with features like Blueprints,
spaces, policies, stack dependencies, and Spacelift’s
own Terraform/OpenTofu provider.

By enabling on-demand infrastructure orchestration
capabilities, Spacelift will help your organization
remain agile and competitive in a technology
landscape that never stays still.

33

EBOOK

Empowering Your DevOps Team

About Spacelift

Spacelift is an infrastructure-as-code (IaC) management platform for
orchestrating the full lifecycle of your infrastructure. It integrates with
your choice of VCS to access and manage your infrastructure code
across all IaC tools (e.g. Terraform, OpenTofu, CloudFormation, Pulumi).
Spacelift workflows orchestrate the full lifecycle of your infrastructure —
provisioning, configuration management, observability-tool and security-
tool integration, cloud resource management, and container orchestration.

By providing developer self-service, golden paths with guardrails, and an
OPA policy engine, Spacelift empowers businesses to accelerate developer
velocity while maintaining control and governance over their infrastructure.
Spacelift offers unrivaled support, no-nonsense pricing, and a range of
deployment models to fit your specific needs.

Learn more about the Spacelift platform and how it can help you overcome
your IaC challenges at Spacelift.io. Sign up for a demo, or test the platform
yourself with a free trial.

https://hubs.li/Q02sTWhL0
https://hubs.li/Q02sTWrm0
https://hubs.li/Q02sTWFg0

